منابع مشابه
Generalized multivalued $F$-contractions on complete metric spaces
In the present paper, we introduce the concept of generalized multivalued $F$ -contraction mappings and give a fixed point result, which is a proper generalization of some multivalued fixed point theorems including Nadler's.
متن کاملGeneralized multivalued $F$-weak contractions on complete metric spaces
In this paper, we introduce the notion of generalized multivalued $F$- weak contraction and we prove some fixed point theorems related to introduced contraction for multivalued mapping in complete metric spaces. Our results extend and improve the results announced by many others with less hypothesis. Also, we give some illustrative examples.
متن کاملGeneralized multivalued $F$-contractions on non-complete metric spaces
In this paper, we explain a new generalized contractive condition for multivalued mappings and prove a fixed point theorem in metric spaces (not necessary complete) which extends some well-known results in the literature. Finally, as an application, we prove that a multivalued function satisfying a general linear functional inclusion admits a unique selection fulfilling the corresp...
متن کاملComplete Generalized Metric Spaces
The well-known Banach’s fixed point theorem asserts that ifD X, f is contractive and X, d is complete, then f has a unique fixed point inX. It is well known that the Banach contraction principle 1 is a very useful and classical tool in nonlinear analysis. In 1969, Boyd and Wong 2 introduced the notion ofΦ-contraction. A mapping f : X → X on a metric space is called Φ-contraction if there exists...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1969
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1969-12210-x